Source code for sofar.io

import contextlib
import os
import numpy as np
from netCDF4 import Dataset, chartostring, stringtochar
import warnings
import pathlib
from packaging.version import parse
import sofar as sf
from .utils import _verify_convention_and_version, _atleast_nd


[docs] def read_sofa(filename, verify='auto', verbose=True): """ Read SOFA file from disk and convert it to SOFA object. Numeric data is returned as floats or numpy float arrays unless they have missing data, in which case they are returned as numpy masked arrays. If you want to read only parts of the data of a large sofa file use :class:`SofaStream` instead. Parameters ---------- filename : str The full path to the sofa data. verify : bool, optional Verify and update the SOFA object by calling :py:func:`~Sofa.verify`. This helps to find potential errors in the default values and is thus recommended. If reading a file does not work, try to call `Sofa` with ``verify=False``. The default is ``'auto'`` defaults to ``True`` for stable conventions with versions of 1.0 or higher and to ``False`` otherwise. verbose : bool, optional Print the names of detected custom variables and attributes. The default is ``True`` Returns ------- sofa : Sofa Object containing the data from `filename`. Notes ----- 1. Missing dimensions are appended when writing the SOFA object to disk. E.g., if ``sofa.Data_IR`` is of shape (1, 2) it is written as an array of shape (1, 2, 1) because the SOFA standard AES69 defines it as a three dimensional array with the dimensions (`M: measurements`, `R: receivers`, `N: samples`) 2. When reading data from a SOFA file, array data is always returned as numpy arrays and singleton trailing dimensions are discarded (numpy default). I.e., ``sofa.Data_IR`` will again be an array of shape (1, 2) after writing and reading to and from disk. 3. One dimensional arrays with only one element will be converted to scalar values. E.g. ``sofa.Data_SamplingRate`` is stored as an array of shape (1, ) inside SOFA files (according to the SOFA standard AES69) but will be a scalar inside SOFA objects after reading from disk. """ return _read_netcdf(filename, verify, verbose, mode="sofa")
[docs] def read_sofa_as_netcdf(filename): """ Read corrupted SOFA data from disk. .. note:: `read_sofa_as_netcdf` is intended to read and fix corrupted SOFA data that could not be read by :py:func:`~read_sofa`. The recommend workflow is - Try to read the data with `read_sofa` and ``verify=True`` - If this fails, try the above with ``verify=False`` - If this fails, use `read_sofa_as_netcdf` The SOFA object returned by `read_sofa_as_netcdf` may not work correctly before the issues with the data were fixed, i.e., before the data are in agreement with the SOFA standard AES-69. Numeric data is returned as floats or numpy float arrays unless they have missing data, in which case they are returned as numpy masked arrays. Parameters ---------- filename : str The full path to the NetCDF data. Returns ------- sofa : Sofa Object containing the data from `filename`. Notes ----- 1. Missing dimensions are appended when writing the SOFA object to disk. E.g., if ``sofa.Data_IR`` is of shape (1, 2) it is written as an array of shape (1, 2, 1) because the SOFA standard AES69 defines it as a three dimensional array with the dimensions (`M: measurements`, `R: receivers`, `N: samples`) 2. When reading data from a SOFA file, array data is always returned as numpy arrays and singleton trailing dimensions are discarded (numpy default). I.e., ``sofa.Data_IR`` will again be an array of shape (1, 2) after writing and reading to and from disk. 3. One dimensional arrays with only one element will be converted to scalar values. E.g. ``sofa.Data_SamplingRate`` is stored as an array of shape (1, ) inside SOFA files (according to the SOFA standard AES69) but will be a scalar inside SOFA objects after reading from disk. """ return _read_netcdf(filename, False, False, mode="netcdf")
def _read_netcdf(filename, verify, verbose, mode): # check the filename filename = pathlib.Path(filename).with_suffix('.sofa') if not os.path.isfile(filename): raise ValueError(f"{filename} does not exist") # attributes that are skipped skip = ["_Encoding"] # init list of all and custom attributes all_attr = [] custom = [] # open new NETCDF4 file for reading with Dataset(filename, "r", format="NETCDF4") as file: if mode == "sofa": # get convention name and version convention = getattr(file, "SOFAConventions") version = getattr(file, "SOFAConventionsVersion") # check if convention and version exist _verify_convention_and_version(version, convention) # get SOFA object with default values sofa = sf.Sofa(convention, version=version, verify=verify) else: sofa = sf.Sofa(None) # allow writing read only attributes sofa.protected = False # load global attributes for attr in file.ncattrs(): value = getattr(file, attr) all_attr.append(f"GLOBAL_{attr}") if not hasattr(sofa, f"GLOBAL_{attr}"): sofa._add_custom_api_entry( f"GLOBAL_{attr}", value, None, None, "attribute") custom.append(f"GLOBAL_{attr}") sofa.protected = False else: setattr(sofa, f"GLOBAL_{attr}", value) # load data for var in file.variables.keys(): value = _format_value_from_netcdf(file[var][:], var) all_attr.append(var.replace(".", "_")) if hasattr(sofa, var.replace(".", "_")): setattr(sofa, var.replace(".", "_"), value) else: dimensions = "".join(list(file[var].dimensions)) # SOFA only uses dtypes 'double' and 'S1' but netCDF has more dtype = "string" if file[var].datatype == "S1" else "double" sofa._add_custom_api_entry(var.replace(".", "_"), value, None, dimensions, dtype) custom.append(var.replace(".", "_")) sofa.protected = False # load variable attributes for attr in [a for a in file[var].ncattrs() if a not in skip]: value = getattr(file[var], attr) all_attr.append(var.replace(".", "_") + "_" + attr) if not hasattr(sofa, var.replace(".", "_") + "_" + attr): sofa._add_custom_api_entry( var.replace(".", "_") + "_" + attr, value, None, None, "attribute") custom.append(var.replace(".", "_") + "_" + attr) sofa.protected = False else: setattr(sofa, var.replace(".", "_") + "_" + attr, value) # remove fields from initial Sofa object that were not contained in NetCDF # file (initial Sofa object contained mandatory and optional fields) attrs = [attr for attr in sofa.__dict__.keys() if not attr.startswith("_")] for attr in attrs: if attr not in all_attr: delattr(sofa, attr) # do not allow writing read only attributes any more sofa.protected = True # notice about custom entries if custom and verbose: print(("SOFA file contained custom entries\n" "----------------------------------\n" f"{', '.join(custom)}")) # set default for verify if verify == 'auto': verify = True if parse(version) >= parse('1.0') else False # update api if verify: try: sofa.verify(mode="read") except: # noqa (No error handling - just improved verbosity) raise ValueError(( "The SOFA object could not be verified, maybe due to erroneous" " data. Call sofa=sofar.read_sofa(filename, verify=False) and " "then sofa.verify() to get more information")) return sofa
[docs] def write_sofa(filename: str, sofa: sf.Sofa, compression=4): """ Write a SOFA object to disk as a SOFA file. Parameters ---------- filename : str The filename. '.sofa' is appended to the filename, if it is not explicitly given. sofa : object The SOFA object that is written to disk compression : int The level of compression with ``0`` being no compression and ``9`` being the best compression. The default of ``9`` optimizes the file size but increases the time for writing files to disk. Notes ----- 1. Missing dimensions are appended when writing the SOFA object to disk. E.g., if ``sofa.Data_IR`` is of shape (1, 2) it is written as an array of shape (1, 2, 1) because the SOFA standard AES69 defines it as a three dimensional array with the dimensions (`M: measurements`, `R: receivers`, `N: samples`) 2. When reading data from a SOFA file, array data is always returned as numpy arrays and singleton trailing dimensions are discarded (numpy default). I.e., ``sofa.Data_IR`` will again be an array of shape (1, 2) after writing and reading to and from disk. 3. One dimensional arrays with only one element will be converted to scalar values. E.g. ``sofa.Data_SamplingRate`` is stored as an array of shape (1, ) inside SOFA files (according to the SOFA standard AES69) but will be a scalar inside SOFA objects after reading from disk. """ _write_sofa(filename, sofa, compression, verify=True)
def _write_sofa(filename: str, sofa: sf.Sofa, compression=4, verify=True): """ Private write function for writing invalid SOFA files for testing. See write_sofa for documentation. """ # check the filename filename = pathlib.Path(filename).with_suffix('.sofa') if verify: # check if the latest version is used for writing and warn otherwise # if case required for writing SOFA test data that violates the # conventions if sofa.GLOBAL_SOFAConventions != "invalid-value": latest = sf.Sofa(sofa.GLOBAL_SOFAConventions) latest = latest.GLOBAL_SOFAConventionsVersion current = sofa.GLOBAL_SOFAConventionsVersion if parse(current) < parse(latest): warnings.warn(( "Writing SOFA object with outdated Convention " f"version {current}. It is recommend to upgrade " " data with Sofa.upgrade_convention() before " "writing to disk if possible.")) # setting the netCDF compression parameter use_zlib = compression != 0 # update the dimensions if verify: sofa.verify(mode="write") # list of all attribute names all_keys = [key for key in sofa.__dict__.keys() if not key.startswith("_")] # open new NETCDF4 file for writing with Dataset(filename, "w", format="NETCDF4") as file: # write dimensions for dim in sofa._api: file.createDimension(dim, sofa._api[dim]) # write global attributes keys = [key for key in all_keys if key.startswith("GLOBAL_")] for key in keys: setattr(file, key[7:], str(getattr(sofa, key))) # write data for key in all_keys: # skip attributes # Note: This definition of attribute is blurry: # lax definition: # sofa._convention[key]["type"] == "attribute": # strict definition: # ("_" in key and not key.startswith("Data_")) or \ # key.count("_") > 1 # # The strict definition is implicitly included in the SOFA standard # since underscores only occur for variables starting with Data_ if sofa._convention[key]["type"] == "attribute": continue # get the data and type and shape value, dtype = _format_value_for_netcdf( getattr(sofa, key), key, sofa._convention[key]["type"], sofa._dimensions[key], sofa._api["S"]) # create variable and write data shape = tuple(list(sofa._dimensions[key])) tmp_var = file.createVariable( key.replace("Data_", "Data."), dtype, shape, zlib=use_zlib, complevel=compression) if dtype == "f8": tmp_var[:] = value else: tmp_var[:] = stringtochar(value, encoding='utf-8') # write variable attributes sub_keys = [k for k in all_keys if k.startswith(f"{key}_")] for sub_key in sub_keys: setattr(tmp_var, sub_key[len(key)+1:], str(getattr(sofa, sub_key))) def _format_value_for_netcdf(value, key, dtype, dimensions, S): """ Format value from SOFA object for saving in a NETCDF4 file. Parameters ---------- value : str, array like The value to be formatted key : str The name of the current attribute. Needed for verbose errors. dtype : str The the data type of value dimensions : str The intended dimensions from ``sofa.dimensions`` S : int Length of the string array. Returns ------- value : str, numpy array The formatted value. netcdf_dtype : str The data type as a string for writing to a NETCDF4 file ('attribute', 'f8', or 'S1'). """ # copy value with contextlib.suppress(AttributeError): value = value.copy() # parse data if dtype == "attribute": value = str(value) netcdf_dtype = "attribute" elif dtype == "double": value = _atleast_nd(value, len(dimensions)) netcdf_dtype = "f8" elif dtype == "string": value = np.array(value, dtype=f"S{str(S)}") value = _atleast_nd(value, len(dimensions)) netcdf_dtype = 'S1' else: raise ValueError(f"Unknown type {dtype} for {key}") return value, netcdf_dtype def _format_value_from_netcdf(value, key): """ Format value from NETCDF4 file for saving in a SOFA object Parameters ---------- value : np.array of dtype float or S The value to be formatted key : str The variable name of the current value. Needed for verbose errors. Returns ------- value : str, number, numpy array The formatted value. """ if "float" in str(value.dtype) or "int" in str(value.dtype): if np.ma.is_masked(value): warnings.warn(f"Entry {key} contains missing data") else: # Convert to numpy array or scalar value = np.asarray(value) elif str(value.dtype)[1] in ["S", "U"]: # string arrays are stored in masked arrays with empty strings '' being # masked. Convert to regular arrays with unmasked empty strings if str(value.dtype)[1] == "S": value = chartostring(value, encoding="ascii") value = np.atleast_1d(value).astype("U") else: raise TypeError( f"{key}: value.dtype is {value.dtype} but must be float, S or, U") # convert arrays to scalars if they do not store data that is usually used # as scalar metadata, e.g., the SamplingRate data_keys = ["Data_IR", "Data_Real", "Data_Imag", "Data_SOS" "Data_Delay"] if value.size == 1 and key not in data_keys: value = value[0] return value